Reverse Engineering MAC: A Non-Cooperative Game Model

Jianwei Huang

Information Engineering
The Chinese University of Hong Kong

Joint work with J.-W. Lee, A. Tang, M. Chiang and A. R. Canderbank

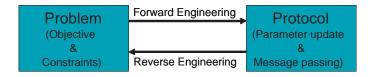
Summary

Reverse engineering:

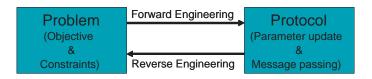
Given the solution, what is the problem?

Know what works, what doesn't, why it works, how to improve.

Summary


Reverse engineering:

Given the solution, what is the problem?


Know what works, what doesn't, why it works, how to improve.

Provide the missing piece (on MAC) for rigorous mathematical understanding of existing layers 2-4 protocols

Reverse Engineering

Reverse Engineering

- Related works:
 - ► Layer 4: TCP/AQM [Kelly-Maulloo-Tan98, Low03, Kunniyur-Srikant03, ...] NUM
 - ► Layer 3: BGP [Griffin-Shepherd-Wilfong02] SPP
 - ▶ Layer 2: MAC (contention avoidance in random access) [This Talk]

Review: TCP/AQM

Network Utility Maximization Problem

maximize
$$\sum_{s} U_s(x_s)$$

subject to $\sum_{s:l \in L(s)} x_s \leq c_l, \ \forall l,$
 $\mathbf{x}^{min} \leq x \leq \mathbf{x}^{max}.$

- $U_s(x_s)$: utility of each user depends on its own data rate
- Adequate feedback from the network

Review: TCP/AQM

Network Utility Maximization Problem

maximize
$$\sum_{s} U_{s}(x_{s})$$

subject to $\sum_{s:l \in L(s)} x_{s} \leq c_{l}, \ \forall l,$
 $\mathbf{x}^{min} \leq x \leq \mathbf{x}^{max}.$

- $U_s(x_s)$: utility of each user depends on its own data rate
- Adequate feedback from the network
- Reverse engineering provides
 - Better understanding: existence, uniqueness, optimality and stability, counter-intuitive behaviors
 - Systematic design: scalable price signal, control laws with better stability properties

MAC Reverse Engineering

- Utility of each link depends on transmission probabilities of all links
- Inadequate feedback from the network

MAC Reverse Engineering

- Utility of each link depends on transmission probabilities of all links
- Inadequate feedback from the network

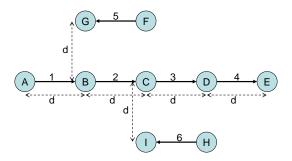
Reverse engineer to non-cooperative game

MAC Reverse Engineering

- Utility of each link depends on transmission probabilities of all links
- Inadequate feedback from the network

Reverse engineer to non-cooperative game

- Questions:
 - ► What are users' utility functions?
 - ▶ What does the MAC protocol do for the game?
 - ▶ What are the properties of the Nash Equilibrium (result of game)?


Different Work

Game to MAC:

- MacKenzie, Wicker 2003
- Jin, Kesidis 2004
- Altman et. al. 2005
- Yuen, Marbach 2005
- Wang, Krunz, Younis 2006

- This is different: Reverse engineering
- Discover, not impose, utility and game

Sample Network

Persistence Probabilistic Model of Protocol

Protocol parameters:

- p_I^{max}: Maximum persistent probability (politeness)
- p_l^{min}: Minimum persistent probability
- $\beta_l \in (0,1)$: Backoff multiplier

Persistence Probabilistic Model of Protocol

- Protocol parameters:
 - p_I^{max}: Maximum persistent probability (politeness)
 - p_l^{min}: Minimum persistent probability
 - ▶ $\beta_l \in (0,1)$: Backoff multiplier
- Protocol description: link / transmits with a probability p_I
 - If success (no collision), update $p_l = p_l^{\text{max}}$
 - ▶ If failure (collision), update $p_l = \max\{p_l^{\min}, \beta_l p_l\}$, where $0 < \beta_l < 1$

Persistence Probability Update

Persistence Probability Stochastic Update

$$egin{aligned} p_l(t+1) &= \max\{p_l^{min}, p_l^{\max} \mathbf{1}_{\{T_l(t)=1\}} \mathbf{1}_{\{C_l(t)=0\}} \ &+ eta_l p_l(t) \mathbf{1}_{\{T_l(t)=1\}} \mathbf{1}_{\{C_l(t)=1\}} \ &+ p_l(t) \mathbf{1}_{\{T_l(t)=0\}} \} \end{aligned}$$

T_I(t): link I transmits at time slot t

$$Prob\{T_l(t) = 1|\mathbf{p}(t)\} = p_l(t)$$

• $C_I(t)$: at least one link that can cause collision to link I transmits at t

$$\text{Prob}\{C_{l}(t) = 1 | \mathbf{p}(t)\} = 1 - \prod_{n \in L_{to}(l)} (1 - p_{n}(t))$$

Deterministic Approximation

Persistence Probability Update: Deterministic Approximation

$$p_{I}(t+1) = \max\{p_{I}^{min}, p_{I}^{max}p_{I}(t)\prod_{n\in L_{to}(I)}(1-p_{n}(t)) + \beta_{I}p_{I}(t)p_{I}(t)\left(1-\prod_{n\in L_{to}(I)}(1-p_{n}(t))\right) + p_{I}(t)(1-p_{I}(t))\},$$

- Links are playing a game
- Each link I tries to maximize its utility U_I based on other links' current transmission probabilities

Deterministic Approximation

Persistence Probability Update: Deterministic Approximation

$$\begin{array}{lcl} p_{l}(t+1) & = & \max\{p_{l}^{min}, p_{l}^{max}p_{l}(t) \prod_{n \in L_{to}(l)} (1-p_{n}(t)) \\ \\ & + \beta_{l}p_{l}(t)p_{l}(t) \left(1 - \prod_{n \in L_{to}(l)} (1-p_{n}(t)) \right) \\ \\ & + p_{l}(t)(1-p_{l}(t))\}, \end{array}$$

- Links are playing a game
- Each link I tries to maximize its utility U_I based on other links' current transmission probabilities
- Key question: what is the game model?

MAC Game

Definition

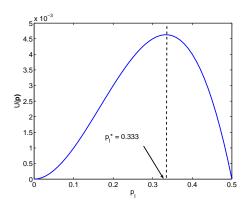
A MAC game is $[E, \times_{l \in E} A_l, \{U_l\}_{l \in E}]$

- E: set of players (links)
- $A_I = \{p_I | p_I^{min} \le p_I \le p_I^{max} \}$: action set of link I
- U_I : utility function of link I

MAC Game

Definition

A MAC game is $[E, \times_{I \in E} A_I, \{U_I\}_{I \in E}]$


- E: set of players (links)
- $A_I = \{p_I | p_I^{\min} \le p_I \le p_I^{\max}\}$: action set of link I
- U_I : utility function of link I

Theorem

Utility function turns out to be expected net reward:

$$U_l(\mathbf{p}) = R(p_l)S(\mathbf{p}) - C(p_l)F(\mathbf{p})$$

where $R(p_l)$ is reward for transmission success, $S(\mathbf{p})$ is probability of transmission success, $C(p_l)$ is cost for transmission failure, $F(\mathbf{p})$ is probability of transmission failure.

Dependence of a utility function on its own persistence probability $(\beta_l = 0.5, \ p_l^{max} = 0.5, \ \text{and} \ \prod_{n \in L_{to}(l)} (1 - p_n) = 0.5)$

Interpretation of MAC protocol: a stochastic subgradient algorithm

- Is it a gradient-based maximization of $U_l(\mathbf{p})$ over p_l ?
 - ▶ No, that requires explicit message passing among links

Interpretation of MAC protocol: a stochastic subgradient algorithm

- Is it a gradient-based maximization of $U_l(\mathbf{p})$ over p_l ?
 - ▶ No, that requires explicit message passing among links
- MAC maximizes U_l using stochastic subgradient ascent method (using only local information on success and collision):

$$p_l(t+1) = \max\{p_l^{min}, p_l(t) + v_l(t)\}$$

where

$$E\{v_l(t)|\mathbf{p}(t)\} = \frac{\partial U_l(\mathbf{p})}{\partial p_l}|_{\mathbf{p}=\mathbf{p}(t)}$$

Existence of Nash Equilibrium

• Assume all links have the same $p^{\text{max}} < 1$ and $p^{\text{min}} = 0$

Existence of Nash Equilibrium

• Assume all links have the same $p^{\text{max}} < 1$ and $p^{\text{min}} = 0$

Theorem

There always exits a Nash equilibrium in the MAC game, which can be characterized by

$$p_{l}^{*} = \frac{p^{max} \prod_{n \in L_{to}(l)} (1 - p_{n}^{*})}{1 - \beta_{l} (1 - \prod_{n \in L_{to}(l)} (1 - p_{n}^{*}))}, \ \forall l.$$

Existence of Nash Equilibrium

• Assume all links have the same $p^{\text{max}} < 1$ and $p^{\text{min}} = 0$

Theorem

There always exits a Nash equilibrium in the MAC game, which can be characterized by

$$p_I^* = \frac{p^{max} \prod_{n \in L_{to}(I)} (1 - p_n^*)}{1 - \beta_I (1 - \prod_{n \in L_{to}(I)} (1 - p_n^*))}, \ \forall I.$$

- Proof: Fixed point theorem in the compact strategy interval.
- The Nash equilibrium may not be unique in general.

Uniqueness and Convergence of Nash Equilibrium

• Define the best response function as

$$p_{l}^{*}(t+1) = \arg\max_{p_{l}^{\mathsf{min}} \leq p_{l} \leq p_{l}^{\mathsf{max}}} U_{l}(p_{l}, p_{-l}^{*}(t))$$

Uniqueness and Convergence of Nash Equilibrium

• Define the best response function as

$$p_I^*(t+1) = rg\max_{p_I^{\min} \leq p_I \leq p_I^{\max}} U_I(p_I, p_{-I}^*(t))$$

Theorem

Define maximum interference degree as $K = \max_{l} |L_{to}(l)|$, then if

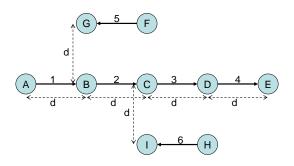
$$\frac{p^{\max}K}{4\beta(1-p^{\max})}<1$$

- The Nash equilibrium is unique
- The best response iteration globally converges to the unique equilibrium

Uniqueness and Convergence of Nash Equilibrium

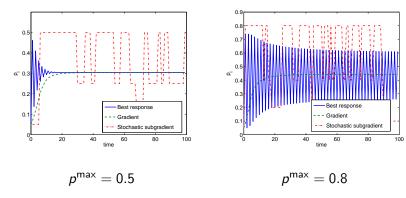
• Define the best response function as

$$ho_I^*(t+1) = rg\max_{oldsymbol{
ho}_I^{ ext{min}} \leq oldsymbol{
ho}_I \leq oldsymbol{
ho}_I^{ ext{max}}} U_I(oldsymbol{
ho}_I, oldsymbol{
ho}_{-I}^*(t))$$


Theorem

Define maximum interference degree as $K = \max_{l} |L_{to}(l)|$, then if

$$\frac{p^{\max}K}{4\beta(1-p^{\max})}<1$$


- The Nash equilibrium is unique
- The best response iteration globally converges to the unique equilibrium
- Proof: Properly bounding the matrix norm of the Jacobian. Show it is a contraction mapping.
- How polite is necessary? Critical value: p_c^{max}

Network Topology

A network with Six Links

Convergence

Comparison of trajectories of $p_l(t)$ in the network

Summary

- Topic: reverse engineering of MAC protocol
- Key idea: a non-cooperative game model
- Results:
 - Utility function discovered: expected net reward
 - Current MAC algorithm corresponds to stochastic subgradient update
 - NE always exists. It is unique and stable if the protocol is polite enough and backoff smooth enough
- Implications:
 - ▶ Reverse engineering leads to deeper understanding of existing protocols
 - Insights are helpful for better forward engineering